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SPLINE SYSTEMS AS BASES 
IN H A R D Y  SPACES 

BY 

PER SJOLIN AND JAN-OLOV STR()MBERG 

ABSTRACI" 

It is known that the spline system of order m is an unconditional basis for 
He[0, 1] when p > 1/(m + 2) and a Schauder basis when p >= 1/(m + 2). We 
show that these results are sharp. 

I. Introduction 

Set I = [0, 1] and let (f~))~=o deno te  the Frankl in  sys tem and (f~m))7 . . . .  m _-> 1, 

spline sys tems of higher  o rder  on I (for a definit ion see e . g . Z .  Ciesielski [1]). 

W e  shall write f ,  instead of [~ ')  and set  / . ( t ) = 0  for  t E R \ L  W e  let 

H p = H p (R), 0 < p < ~,  deno te  the usual H a r d y  spaces on R (cf. [2]). For  a > 0 

we set N = [a ] ,  where  [ ] denotes  the integral  par t ,  and 6 = a - N. If a is not  

an in teger  set  

= /q~  E CN(R);  sup IIAhDNq~ll~/lh 18 <~1 
h~0 J 

(here AhF(X)= F(x + h ) - F ( x ) )  and if a is an integer  set  

: / ~  • CN-~(R); sup IIA~D N-lq~ IIJI h i <  oo] .  Ao 
J 

Also set A~ = A~ [pN, where  pN denotes  the class of  polynomials  of  degree  =< N. 

The  pro jec t ion  f rom ~.~ to A~ is deno ted  7r. For  0 < p =< 1 set  a = 1/p - 1. I t  is 

then wel l -known that  for  0 < p < 1, A~ is the dual  space of H p. If ~o ~ A~ set 

q~(f) = (Tr(qQ)(f) for  f e H p. 

Also  set  HP(I) = {f E HP(R) ;  s u p p f  C I and ~ ( f )  E R for  every  rea l -va lued 

,p E A~}, 0 < p < l .  
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It is also well-known that (Hi)  * =  BMO and we set H i ( I ) = { r E  H I ( R ) ;  

suppf  C 1 and f real-valued}. 

The following theorem was proved in [6]. 

THEOREM A. Assume m >= O. Then (f,)~_,,+N+1 is an unconditional basis of 

HP(I)  if 1/(m + 2 ) <  p -< 1 (here N = [l/p - 1]). 

P. Oswald [4] has obtained the following result. 

THEOREM B. Assume m >= O. Then (f.)~ is a basis of HP(I)  if p = 1/(m + 2). 

The main purpose of this paper is to prove that these results are sharp. We 

shall prove the following theorems. 

Assume p < 1/(m + 2) and k >= - m. Then (f.)~ is not a basis of THEOREM 1. 

HP(I). 

THEOREM 2. (f,)~ is not an unconditional basis of H p (I) if p = 1/(m + 2). 

We remark that the above theorems hold also if we replace HP (I) by the space 

{f @ HP(R); suppf  C I}. 

Throughout  the paper we use the notation a = l ip - 1 and N = [a],  where 

0<p_ -< l .  

I f n _ > - 2 w e w r i t e n = 2  j + l w h e r e j > _ - 0 , 1 _ - l _ - < 2  i, and set t. = (l - ½)2 -j and 

I. = [(l - 1)2 -j, 12-J]. 

We also remark that it follows from the definition of HP (R) that if f ~ H p A 

C~ then 

f f ( t ) tkdt  = 0 ,  = 0 , 1 , 2 , - - - , N .  k 

2. Proof of Theorem 1 

PROOF OF THEOREM 1. We first assume that 0 < p < 1/(m + 3) and that (/,)~ is 

a basis of H p (I), where k _-> - m. It follows that f .  E H p (I), n >_- k. We have 

1/p _-> m + 3 and hence N = [1/p - 1] > m + 2 and f f ,  (t)tm+2dt = O, n >- k. (f,)=,, 

is a complete system in L2(I) and expanding the function tm+2X~ in this system 

we obtain 

t m+2Xl = ~ c.f .  
n ~ - r n  

(where Xx denotes the characteristic function of I). The right-hand side is a 

piecewise polynomial of degree < m + 1 while the left-hand side is of degree 

m + 2 in L Hence we obtain a contradiction. 
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Now assume that 1/(m + 3 ) < p  < 1/(m +2)  and that (f ,) ;  is a basis of HP(I). 
First assume k =< 1. Since f~ is a polynomial of degree m + 1 and N = m + 1 we 

obtain (fa, f~)= 0 which gives a contradiction. We conclude that k _-> 2. 

For every f E HP(I)  there exist unique coefficients a, = a , ( f )  such that 

f = E~ a. ( f ) f .  with convergence in H p. We first claim that 

(1) I a, (DI _-< C, [Ifll,~, n>-k.  

HP(I) is a complete metric space with the metric d( f ,g )  = l l f - g l l ~ .  We set 

Ilfllo = sup ,=k ~ a,f, , , f E H"(I ) ,  

and 

do( f ,g )=l l f  -gllg, f, g E H " ( I ) .  

It is then clear that 

(2) lan(f)l ~ C. Ilfll0, n ~ k .  

do is a metric on H p (I) and we shall prove that it is complete. Therefore  assume 

that (g")]~ is a sequence in H p (I) such that ]] g" - g "  ]]o--~ 0 as n, m --> oo. It follows 

that there exists a sequence (a,)~ of real numbers such that l i m , ~  a, (g ") = a~, 

i>=k. 
We shall prove that Y.~a~f~ converges in H p with sum g and that 

lim._= II g "  - g 11o =- 0. 

Choose e > 0. Then there exists M such that II g° - g m  Iio < ~ if n, m => M, i.e. 

(a , (g" ) -a , (g" ) ) f~  <e" ,  
U P  

l = k , k + l , k + 2 , . . . ;  n , m > - M .  

Hence 

(3) (a, (g") - <= e P, 

We have 

l>=k, n>=M. 

if l~ and 12 are large enough. Hence E~ a,f~ converges in H "  and letting g denote 

this sum we conclude from (3) that II g" - g IIo--~ 0 as n --~ oo. It follows that do is a 

complete metric. 

We have I[f[Inp <= I]fllo and it follows from the open mapping theorem (see W. 

Rudin [5], pp. 48-49) tha t  [Ifllo= < Cllf[I,p. Hence (1)is  a consequence of (2). 

a,f~ <= (a,(gM)-a,) f~ up+ a, (gM)f~ =<2eP +e ,  
I 1 H p 11 I 1 
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Let  b be a p - a tom  with support  o n / ,  i.e. supp b C J C / ,  where J is an interval, 

Ilbllo<-fJI -~'~ and fb (x)x 'dx  = 0 ,  / = 0 , 1 , . . . , N .  We have b =E~cn/ .  with 

convergence in L 2, where c. =fbfndt. It follows that also b = Z~c.[ ,  with 

convergence in H p (cf. the proofs of lemmas 3 and 4 in [6}). However ,  we also 

have b = E~a,(b)[n with convergence in H p. 

First assume k = 2. It then follows that 

(4) an (b) = c, = f bfndt. 

We shall now make a special choice of b. Choose q~ E C~(R) such that ~ is odd, 

s u p p ~  C ( -  1/2,1/2), ~(x)=>0 for x =<0 and ~(x)=<0 for x ->0, IDm+I~[_-< 1 
and ~ 0. Set 

q~ (x) = am+~-~/Pq~(x/a), a > O. 

Now fix n >=2. Set B,(x)=q~,(x - t , )  and b, =D'~+~B,. It  is then easy to see 

that b~ is a p -a tom with support  in the interval J = (t, - a/2, t, + a/2). We have 

a~Cb~)= f b~f.dt:-C-1)'+l f BaDm+lfndto 

We now invoke the fact that D m÷~f. has a jump with absolute value d. > 0 at t. 

(cf. the proof  of l emma 2 in [6]). It  follows that 

I an (b,)l --> ca m+~-~"d.a 

if a is small and positive, where c > 0. 

From (1) it follows that lan (b.)l--< C. and hence a ~+2-~/" = Cn. This can only 

hold if m + 2 - 1/p >= O, i.e. p _--- l (m  + 2). We have obtained a contradiction and 

the proof  is complete in the case k = 2. 

Now assume k ->__ 3. We have 

k 

•-l = ~ a. (fk-1)fn. 
k 

If b is a p - a tom  we therefore obtain 

2 k k k 

= (ao ff2)c2 + - "  + a .  + cn)fn 
k 
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with convergence  in H p, where  cn = f bf.dt. It follows that  

(5) a . (b )=a . ( f2 )c2+. . .+a . ( f i  ~)ck_~+c,, n > k .  

We fix n > k and choose ba as above.  It is clear that I a .  (b~)t -<- C. hut  the above  

estimates show that  [c. t---> ~ as a---~0 (here c~ = c~ (b~)= f baf~dt). If we also 

observe that  Dm÷~f, is constant  in a ne ighbourhood  of t., 2 - < i =  < k -  1, we 

obtain lim~_0 c~ (b~) = 0, 2 =< i < k - 1, and hence (5) yields a contradict ion.  The  

proof  is complete .  

3.  P r o o f  of  T h e o r e m  2 

We first prove  the following lemma.  

LEMMA 1. Assume c~ E R, i = 0, 1,. • -, m. 

f ~ C m ([0, m + 1]) with the following properties : 

(6) 

(7) f'k~(0) = ck, 

(8) f¢~(m + 1) = 0, 

(9) Ifpdx <-<_ C sup Ic, I, 
i 

Then there exists 

f i s a  polynomial of degree <= m + 1 in every interval [k, k + 1], 

k = 0 , 1 , . . . , m ,  

k = 0, 1 , - - - ,  m, 

k = 0 , 1 , . . . , m ,  

where C depends only on m. 

PROOF. We set 

f ( x ) =  j~ x'  + d,(x . m÷, 

where  we shall de te rmine  (dj)g so that  (8) holds. For  m < x _-< m + 1 we have 

f ( x )  = o~ j ~ x ' + h ( x ) ,  

where  h ( x )  = E ~  dj (x - j ) , ,+ l .  It follows that  

h ' ( x )=(m + 1 )  ~'~ di(x - j r ' ,  
0 

h"(x) = (m + 1)m ~ dj(x _j)m-1, 
0 

h ~ ( x )  = (m + 1)! ~ dj(x - / )  
0 
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for m <x  <=m + l. 
Since the determinant 

(m + 1) ~+~ 

(m + 1) '~ 

m + l  

m"+'  . . -  2 "+~ 1 

m "  2" 1 

m 2 1 

defined modulo sign by the conditions 

(10) 

(11) ¢ A_ S~', 

02) 

N o w  assume n = > 2 ,  

z ~$7~  

i.e., fr r(x)f(x)dx = 0 for all f E S~, 

n = 2. + l. Set F, (t) = 2-mf~ (2-J(t + l - 1)), t E R. Thus 

theorem. 

THEOREM 3. 

[IF. [[2 = 1 and F. is obtained by a dilation and translation of f.  which maps the 

interval I.  = [(I - 1)2 -j, 12-q on I and t. on the point ~. We have the following 

If 8 > 0 then 

lim /7. = ¢ 
~6t~--~1-# 

with convergence in L2(R) (if the sign of f .  is chosen correctly). 

REMARK. The condition 3 ~ t. _-< 1 -  8 can be replaced by the condition 

8. ~ t. =< 1 - 6., where n& --+ ~. 

P r o o f  OF THEOREM 3. Set b = 2* - l + 1 and a = - l + 1 so that F. vanishes 

outside the interval [a, b]. We then choose e, E L2(R) such that e. = 0 outside 

the intervals L = [b, b + m + 1] and J0 = [a - (m + 1), a ] and so that: e. E C "  

outside the points b and a ; e. is a polynomial of degree =< m + 1 in each interval 

does not vanish, there is exactly one choice of (dj)~" such that (8) holds. It also 

follows that supi i di i =< C sup~ I c, I and (9) follows from this estimate. 

We shall now introduce some notation which has been used in J.-O. 

Str6mberg [7]. Let  Ao=Z+U{0}U~Z_ and A I =  AoU{~}. A0 splits R into 

intervals (L)~ao ,  where o- is the left endpoint of L .  Let  S~" be the subspace of 

functions f in L2(R) such that f E C" (R)  and is a real polynomial of degree _-< 

m + 1 on each I, ,  tr E Ao. Let $7' be the corresponding subspace of L2(R) with 

the set Ao replaced by A~. Then there is a function z E L2(R) which is uniquely 
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[k,k + 1], k @Z, if [k,k + 1]C J~ or Jo; the right-hand derivatives of e. of 

order N m are equal to the corresponding left-hand derivatives of F. at the point 

b, the left-hand derivatives of e. of order <= m are equal to the corresponding 

right-hand derivatives of F. at the point a, II ~. 112 <- Cr°, o < r < 1. 

The existence of such a function e. is a consequence of Lemma 1, the 

exponential decay of D k f .  (cf. Z. Ciesielski [1], theorem 6.1) and the assumption 

3 < = t , < = 1 - 8 .  

The definition of f,  implies that F, ± S~' and from the definition of e, it 

follows that F. + e. E $7'. Let  Po denote the orthogonal projection on S~'. Then 

and 

F. +e .  = to (F .  + ~°)+(F" + e., 7)r 

IIF" + ~./1~-- Ilto(F" + ~.)II~+(F" + ~°, ~)2. 

Since t oF"  = 0 and l i m . ~  11 e .  112 = 0 it follows that 

IIF" 1122- (F", ~)2 

tends to zero as n tends to infinity. But IIF" 112-- 1 and hence lim,_.= (F , ,  r )  2= 1. 

Choosing the sign of f.  correctly we obtain l i m , ~  (F., r )  = 1. It follows that  

II F .  - r II~ = II F ,  II~ + II r II~ - 2( F" , r ) = 2 - 2( F , ,  r ) ~ O as n ~ o 0  

and the theorem is proved. 

We shall finally prove Theorem 2. 

PROOF OF THEOREM 2. We first prove that  Din+i t  has a jump at some point 

k > 0, where k is an integer. Assume that D " + l r  has no jump at the points 

k = 1 , 2 , 3 , - . . .  Then r is a polynomial on the interval [½,m) and belongs to L a 

and hence r vanishes on [½, m). Since D =+1~. has a jump at the point ½ we have 

r ( x  ) = Co(½- x )+m+l, 0 <_ X =< 1, 

where Co # O. Now choose g ~ S~' with support in [0, ~) such that g ( x )  = x r"+~, 

0 =< x =< 1. Then 

f01/2 f g zdx  - x ) "+ ' x"+~dx  / O, Co(½ 

which contradicts the fact that ~-± S~". 

We have proved that there exists a point k > 0 such that D " + ~  " has a jump at 

this point. It then follows from Theorem 3 that Dm+~F. has a jump of absolute 

value => c > 0 at the point k if n is large enough and 8 =< t. ~ 1 -  8. Hence 
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D"+lf,, has a jump with absolute v a l u e -  > _ C 2  j ( rn+3/2)  at the point  2-J(k + 1 -  1) 

(here n = 2 i + l). We choose lj = 2 - l -  k + 1 and set nj = 2 j + lj and conclude 

that  D"+If., has a jump of absolute value = c2 j("+3/2) at the point  ~ for j => jo. Now 

assume that  p = 1/(m + 2) and that  (f.)7 is an uncondi t ional  basis of HP(I). Then  

for each f C HP(1) we have f = X~ a.f. with convergence  in H",  where  a .  = 

a .  (f), and every r ea r r angemen t  of this series also converges.  

First we claim that  

for  every  finite set o- of integers _-> 2, where  the constant  Q does not  depend  on 

or. We shall prove  that  if the claim is not  t rue then there  exists an enumera t ion  

(nj)~ of the set {2, 3, 4 , . . .  } such that  Y~ a.J . j  diverges in the H p norm.  

T o  do this first set No = 0. Assume N~ ~ is defined.  If the claim does  not  hold 

then there  is a finite set ~rj of integers ~ 2 such that  

a.[ .  >= N- ,  + J. 
• H P 

Let  6-j = {2, 3 , . -  -, max ~rj} and 

Nj = max a.f. . 
aCOj n E a  H P 

Finally set 6-j=~j-lUa'j, where ~o=Q. Then f f o C ~ C ~ 2 C " ' ,  
6", C 6"2 C 6"3 C . . .  and U ~  6"j = {2, 3, 4 , . . .  }. Fu r the rmore  

a.[. • a. -> (N~_I + j ) -  Nj_, = j. 
H p  = o~\o. i Hp 

Now we choose the integers (nk)~ in the following way. First we take the integers 

in 6"1 in any order ,  then the integers in 6"2\6"1, and so on. In this way 

{nl, n2," ", nk} = 6"j for  some kj and the divergence of Z7 a,~f,~ is obvious.  

This completes  the proof  of the claim. 

Let  0 = (0~)~ be any sequence  of numbers  - 1, 0, 1 of which all but finitely 

many  are  0. It follows that  M6f = E~ O~a,f, satisfies supe llM0f[l   < ~ for  each 

f E H P ( I )  and since [a,  I = l a , ( f ) l _ -  < c .  I1£11-,, we also have 

IIMdl[,,. ---- Ilfll,,,. 

By the Banach-S te inhaus  t heo rem ([5], p. 44, t heo rem 2.6) we conclude that  

IIMdll, .  --< cllfll,  
with the constant  C independen t  of 0 and [ (cf. also [3]). 



Vol. 45, 1983 HARDY SPACES 155 

Using a p rope r ty  of the R a d e m a c h e r  funct ions (see A. Z y g m u n d  [8], p. 213) 

we then find that  

(13) _ -< c I I f l l - . ,  f @ H p ( I ) .  

W e  choose ~p and ~p. as in the p roof  of T h e o r e m  1 and set  B .  (x)  = (p. (x - ½) and 

ba = Dm+'Ba. It  follows that  ba is a p - a t o m  with suppor t  in the interval  

J = (I - a /2 , )+ a/2). 
We have ba = 122 c.f.  with convergence  in L 2, where  c. = f baf, dr It  follows 

that  ba = I£2 c.f. with convergence  in H p and hence 

a.=a.(b.)=f bof.at=(-1)=+'f BoD"~+lf.dt. 

Since D~+~f., has a j u m p  of absolu te  value g c2 *('+3m at the point  ½ and is 

cons tant  on each  of the intervals (-~-2 t-t,½) and t ~ -, (~,~+2 ) , w e  obta in  

la.,(b~)l>-_ca "+' '/P2*('+~ma = c 2  *<'+~m, a =<2-*, j>=jo, 

where  c > 0. 

I t  is known that  there  exists a subinterval  I "  of the interval  I ,  such that  

and 

l I ' l  => c2  -j 

I]:. (x)l >= c2Jn-, x E I'., 

for  some  cons tant  c > 0 (see the p roof  of l e m m a  2 in [6]). 

We first a ssume that  k _-> 2. Then  the intervals I,j are  disjoint.  Invok ing  (13) 
and writ ing a,, instead of a. (bo) we obta in  

\ 1/2 II lip IL: (f a.f.)2 2\P/2 "dO 

and hence  

C>= 2 .,f.,) dt>= 2 a a.,[. ,)  dt 
J>Jo 't nj~_l/a n. 

= (a . , f . )  p dt = c  ~ 2i("+a12)p2-i2 ip/2 
J ~=Jo "j J ~Jo 

nj~=lla nj~_l/a 

= c ~] 2'('+2)P2 -* = c ~,  
J ::'% J->-io 

nj~--lla nl"Zl/a 

. 
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But the right-hand side tends to infinity as a---~0 and hence we obtain a 

contradiction. 

If k = 1 the intervals Inj are not disjoint, but we can choose I" so that 

I ' C ( 1 - 8 ) I , ,  8 > 0 ,  for every n. Then the intervals I',Lj, j = 1 , 2 , 3 , . . . ,  are 

disjoint if L is chosen so large that 2 -L < & The above argument now applies 

with the intervals I',, replaced by the intervals I'Lc It follows that (fn)~ is not an 

unconditional basis of He(l) and the proof is complete. 

REFERENCES 

1. Z. Ciesielski, Constructive function theory and spline systems, Studia Math. 53 (1975), 277-302. 
2. C. Fetterman and E. M. Stein, H e spaces of several variables, Acta Math. 129 (1972), 137-193. 
3. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Springer-Verlag, 1977. 
4. P. Oswald, Convergence of spline expansions in Hardy spaces ( 0 < p  =< 1), Technische 

Universit/it Dresden, 1981. 
5. W. Rudin, Functional Analysis, McGraw-Hill Book Company, 1973. 
6. P. Sj61in and J.-O. Str6mberg, Basis properties of Hardy spaces, Ark. Mat., to appear. 
7. J.-O. Str6mberg, A modified Franklin system and higher order spline systems on R" as 

unconditional basis of Hardy spaces, Proceedings of the conference in Chicago 1981 in honor of A. 
Zygmund, Wadsworth, 1983. 

8. A. Zygmund, Trigonometric Series, Vol. 1, Cambridge Univ. Press, t959. 

DEPARTMENT OF MATHEMATICS 
UNIVERSITY OF STOCKHOLM 

BOX 6701, S-113 85, STOCKHOLM, SWEDEN 


