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SPLINE SYSTEMS AS BASES
IN HARDY SPACES

BY
PER SJOLIN AND JAN-OLOV STROMBERG

ABSTRACT

It is known that the spline system of order m is an unconditional basis for
H?[0,1] when p >1/(m +2) and a Schauder basis when p =1/(m +2). We
show that these results are sharp.

1. Introduction

Set I = [0, 1] and let (f)»-o denote the Franklin system and (f{)r-_.., m =1,
spline systems of higher order on I (for a definition see e.g. Z. Ciesielski [1]).

We shall write f, instead of f{™ and set f.(t)=0 for t ER\L We let
H? = H?(R), 0 < p <, denote the usual Hardy spaces on R (cf. [2]). For @ >0
we set N = [a], where [ ] denotes the integral part, and 8 = « — N. If « is not
an integer set

Ao = {‘P € CY(R); sup |AD e ||/ B |° < °°}
h#0
(here A, F(x)=F(x +h)— F(x)) and if « is an integer set
i ={o € Cmy; sup 11D o uln <o)

Also set A, = A, /P™, where P" denotes the class of polynomials of degree = N.
The projection from A, to A, is denoted 7. For 0<p <1seta =1/p—1.1tis
then well-known that for 0<p <1, A, is the dual space of H”. If ¢ €A, set
e(f)=(m(e)(f) for fEH".

Also set H?(I)={f € H°*(R); suppf C I and ¢(f) ER for every real-valued
e EA.} 0<p<l.
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It is also well-known that (H')* =BMO and we set H(I)={f € H'(R);
suppf C I and f real-valued}.
The following theorem was proved in [6].

THEOREM A. Assume m =0. Then (f,) m+n+1 IS an unconditional basis of
HY () if Ym+2)<p =1 (here N=[l/p—-1]).

P. Oswald [4] has obtained the following result.
THEOREM B. Assume m =0. Then (f,); is a basis of H?(I) if p = 1/(m +2).

The main purpose of this paper is to prove that these results are sharp. We
shall prove the following theorems.

THEOREM 1. Assume p <1/(m +2) and k = —m. Then (f. )« is not a basis of
H7(I).

THEOREM 2. (f.)7 is not an unconditional basis of H*(I) if p =1/(m +2).

We remark that the above theorems hold aiso if we replace H?(I) by the space
{f € H?(R); suppf C I}.

Throughout the paper we use the notation &« =1/p —1 and N = [a], where
O0<p=Ll

If n =2 we write n =2 +1 where j =0, 1=1=2/, and set t, = (I —3)277 and
L =[(-1)27,127].

We also remark that it follows from the definition of H”(R) that if f € H? N
C; then

Jf(:):“dt=0, k=0,12,--- N.

2. Proof of Theorem 1

PrOOF OF THEOREM 1.  We first assume that 0 < p = 1/(m +3) and that (f. )i is
a basis of H?(I), where k = — m. It follows that f, € H?(I), n 2 k. We have
1/pzm+3andhence N=[1/p —1]Zzm +2and [f, ()" dt =0, n Z k. (f.)°m

m+2

is a complete system in L*(I) and expanding the function t™**; in this system

we obtain
k=1

tm+2Xl= 2 cnfn

n=-m

(where x; denotes the characteristic function of I). The right-hand side is a
piecewise polynomial of degree =m +1 while the left-hand side is of degree
m +2 in I Hence we obtain a contradiction.
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Now assume that 1/(m +3) <p < 1/(m +2) and that (f,)x is a basis of H?(I).
First assume k = 1. Since f, is a polynomial of degree m +1 and N=m +1 we
obtain (f,, f;) =0 which gives a contradiction. We conclude that k = 2.

For every f€&€ Hf(I) there exist unique coefficients a. = a,(f) such that
f=2%a.(f)f. with convergence in H?. We first claim that

(1) la. (O = Cllfllwr, nzk

HP(I) is a complete metric space with the metric d(f, g) =||f — g|[&. We set

n

2 af.

i=k

,  fEH (),

HP

£ llo= sup

and
dof.g)=Ilf—glb.  f.g€H ()

It is then clear that

) la. (Hl=Cllfl, nzk

d, is a metric on H? (I) and we shall prove that it is complete. Therefore assume
that (g" )7 is a sequence in H?(I)such that||g" — g™ |l,— 0 as n, m — . It follows
that there exists a sequence (a;)i of real numbers such that lim,_. a,(g") = a,,
i=zk

We shall prove that 2% af converges in H? with sum g and that
lim,..[|g" — gllo=0.

Choose € > 0. Then there exists M such that||g" — g™ [h<e if n,m = M, i.e.

H
[Saer-a@ni| <o 1=kkenkaz mmzm
k HP
Hence
! p
3) Ng(ai(g")_ai)fi" =g’ Ilzk, n=M.
k HP
We have

2 aifi

h

=[S @e-am], | Saeo], =20+

if I, and I, are large enough. Hence 2% a:f; converges in H” and letting g denote
this sum we conclude from (3) that ||g" — g |lo— 0 as n — «. It follows that d, is a
complete metric.

We have | f|lw» =|flb and it follows from the open mapping theorem (see W.
Rudin [5], pp. 48-49) that [|f|lp= C|/f|ls>. Hence (1) is a consequence of (2).
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Let b be a p-atom with support on I, i.e. supp b C J C I, where J is an interval,
(6ll-=|J[* and [b(x)x'dx =0, 1 =0,1,---,N. We have b =33c.f, with
convergence in L?, where ¢, = [ bf.dt. It follows that also b =25 c¢.f, with
convergence in H” (cf. the proofs of lemmas 3 and 4 in {6]). However, we also
have b = 2% a.(b)f. with convergence in HP.

First assume k = 2. It then follows that

@) a,(b)= ¢, = f bf.dt.

We shall now make a special choice of b. Choose ¢ € C5(R) such that ¢ is odd,
supp ¢ C(—1/2,1/2), ¢(x)=0 for x =0 and ¢(x)=0 for x =0, |[D™"'¢|=1
and ¢ #0. Set

Q. (x)=a™""p(x/a), a>0.

Now fix n =2. Set B,(x)= ¢.(x —t.) and b, = D™*'B,. It is then easy to see
that b, is a p-atom with support in the interval J = (t. — a/2,t, + a/2). We have

a,(b.)= f b.f.dt = (—1)"* j B.D™"'f.dt.

We now invoke the fact that D™*'f, has a jump with absolute value d, >0 at t,
(cf. the proof of lemma 2 in [6]). It follows that

|a. ()| = ca™"""*d,a

if a is small and positive, where ¢ > 0.

From (1) it follows that |a, (b,)| = C, and hence a™**""? = C,. This can only
holdif m +2—1/p =0, i.e. p = 1(m +2). We have obtained a contradiction and
the proof is complete in the case k =2.

Now assume k =3. We have

oo

f2 = z a. (f2)fn7

k

foor=3 a (.

k

If b is a p-atom we therefore obtain

b

Cfn =€ 2 a.(f)f. +- -+ 2 a.(f-)fo + 2 Cufn

=Mz o[\s

(an (fz)Cz F-rt+a, (fk—l)ck—l + cn)fn
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with convergence in H?, where ¢, = [ bf.dt. It follows that
(5) a,. (b)z a,. (fz)C2+ tr +an (fk,l)ck_1+c,., n ; k

We fix n = k and choose b, as above. It is clear that |a. (b,)| = C, but the above
estimates show that |c,|—>® as a >0 (here ¢; = ¢;(b.) = [ b.fidt). If we also
observe that D™''f; is constant in a neighbourhood of t.,, 2=i=k —1, we
obtain lim,_oc:(b,)=0,2=i =k —1, and hence (5) yields a contradiction. The
proof is complete.

3. Proof of Theorem 2
We first prove the following lemma.

LEmMMA 1. Assume ¢ €R, i=0,1,---,m Then there exists
feC™([0,m +1]) with the following properties:

fis a polynomial of degree = m + 1 in every interval [k, k + 1],

© k=0,1,---,m,
@) o0 =c, k=0,1,--m,
®) fOm+1)=0, k=0,1,---,m,
m+1 12
©) ( J; If |2dx) =C sup lc:|,  where C depends only on m.

PrRCOE. We set
=3 S +$ d,(x =y,
where we shall determine (d; );* so that (8) holds. For m <x = m + 1 we have
f) =2 G/ +hx),
where h(x)=25d;(x —j)"*". It follows that

W)= m+1) S dy(x =y,

h(x)=(m + Dm 3, dy(x =),

h™(x)=(m +1)! i d;(x =)
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form<x=m+1.
Since the determinant

(m + 1)m+1 mm+1 . 2m+1 1
(m+pH)» m™ 2" 1
m+1 m 2 1

does not vanish, there is exactly one choice of (d;)i such that (8) holds. It also
follows that sup; |d; | = Csup; |c:| and (9) follows from this estimate.

We shall now introduce some notation which has been used in J.-O.
Stromberg [7]. Let A,=Z,U{0}UIZ_ and A,=A,U{}}. A, splits R into
intervals (I, ),ca,, Where o is the left endpoint of I,. Let Sg be the subspace of
functions f in L*R) such that f € C™(R) and is a real polynomial of degree =
m +1 on each I,, o € A,. Let ST be the corresponding subspace of L*(R) with
the set A, replaced by A,. Then there is a function 7 € L*(R) which is uniquely
defined modulo sign by the conditions

(10) TE ST;
(11) r18g, ie., j T(x)f(x)dx =0 for all f € S¢,
(12) Il =1.

Now assume n =2, n=2 41 Set F,(t)=27"*f,27(t+1-1)), t €R. Thus
|F.|l.=1 and F, is obtained by a dilation and translation of f, which maps the
interval I, = [(I ~1)27,127] on I and t. on the point ;. We have the following
theorem.

THEOREM 3. If 6 >0 then

Iim F,=1
8§':n§1—6

with convergence in L*(R) (if the sign of f. is chosen correctly).

REMARK. The condition 8 =1, =1—8 can be replaced by the condition
8. =t,=1-45,, where né, — .

PrOOF OF THEOREM 3. Set b =2/ —~[+1and a = —~ [ +1 so that F, vanishes
outside the interval [a, b]. We then choose &, € L*(R) such that &, =0 outside
the intervals J,=[b,b +m +1] and J,=[a —(m +1),a] and so that: ¢, €C™
outside the points b and a; ¢, is a polynomial of degree =m + 1 in each interval
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[k, k +1], k €Z, if [k,k +1]CJ, or J;; the right-hand derivatives of &, of
order = m are equal to the corresponding left-hand derivatives of F, at the point
b, the left-hand derivatives of ¢, of order = m are equal to the corresponding
right-hand derivatives of F, at the point a, &, [. = Cr", 0<r<1.

The existence of such a function ¢, is a consequence of Lemma 1, the
exponential decay of D*f, (cf. Z. Ciesielski [1], theorem 6.1) and the assumption
b=t,=1-6.

The definition of f, implies that F, L S and from the definition of &, it
follows that F, + £, € ST. Let P, denote the orthogonal projection on Sg. Then

F,+¢&,=PyF, +&,)+(F, +&.,1)r

and

||F,. + En

3: ”Po(F,, + 8,;)

54+ (F. + &a, 7).
Since P,F, =0 and lim,..[&. [, =0 it follows that
IF. |t - (F, )

tends to zero as n tends to infinity. But | F, ||, = 1 and hence lim,_. (F,, 7’ = 1.
Choosing the sign of f, correctly we obtain lim,_..(F,, )= 1. It follows that

IF. —7lE=IF. B +]7: - 2(F., 7)= 2= 2(F.,7)—>0 asn—
and the theorem is proved.
We shall finally prove Theorem 2.

ProoOF OF THEOREM 2. We first prove that D™*'7 has a jump at some point
k >0, where k is an integer. Assume that D™*'s has no jump at the points
k=1,2,3,---. Then 7 is a polynomial on the interval [},») and belongs to L*
and hence 7 vanishes on [3,). Since D™*'7 has a jump at the point ; we have

7(x) = o3 —x)T*7, 0=x=1,

where ¢, # 0. Now choose g € S§* with support in [0, ®) such that g(x)=x"",
0=x =1. Then

1/2
f grdx =f col—x)"1x™dx #0,
R [¢]

which contradicts the fact that 7 1 Sg'.

We have proved that there exists a point k >0 such that D™ "7 has a jump at
this point. It then follows from Theorem 3 that D™*'F, has a jump of absolute
value =c¢ >0 at the point k if n is large enough and § =¢, =1- 8. Hence
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D™'f, has a jump with absolute value = ¢2***? at the point 27(k +1—1)
(here n =2 +1). We choose [, =2""—k +1 and set n; =2’ +1]; and conclude
that D™*'f, has a jump of absolute value = c2/™***? at the point ; for j Z jo. Now
assume that p = 1/(m +2) and that (f,.); is an unconditional basis of H? (I). Then
for each f € H?(I) we have f =27 a.f, with convergence in H*, where a, =
a,(f), and every rearrangement of this series also converges.

First we claim that

> adf,

nEo

=G
HP

for every finite set o of integers = 2, where the constant C; does not depend on
o. We shall prove that if the claim is not true then there exists an enumeration
(m;)7 of the set {2,3,4, -} such that 27 a, f. diverges in the H” norm.

To do this first set Ny =0. Assume N,_; is defined. If the claim does not hold
then there is a finite set o; of integers = 2 such that

Y. aufa

n€o;

14
=N +]
H?

Let o; ={2,3, - -,max g;} and

> a.f.

nEa

14
N, = max
Hr

oCoj

Finally set &;,=6,-1Uo;, where o60=J. Then 6,Co,Co,C:--,
5 C6,Co5C-+- and UT&,— ={2,3,4, - -}. Furthermore

> a.f. 2 a.f. Y a.f.

& &;\ay
Now we choose the integers (n.); in the following way. First we take the integers

p
=
HP

p
EWNaH) - Na=)

P
H?

in ¢, in any order, then the integers in &.\&,, and so on. In this way
{ni, ns,- - -,m} = &, for some k; and the divergence of 27 a,,f., is obvious.
This completes the proof of the claim.
Let 6 =(6,); be any sequence of numbers —1, 0, 1 of which all but finitely
many are 0. It follows that M,f = 25 8,a.f, satisfies sup, | Msf||s» < oo for each
f € H*(I) and since |a.|=|a.(f)|= C.|f e, we also have

| Mof [l = Collf llser-
By the Banach-Steinhaus theorem ([5], p. 44, theorem 2.6) we conclude that

[Mof llee = Clf [l
with the constant C independent of 8 and f (cf. also [3]).
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Using a property of the Rademacher functions (see A. Zygmund [8], p. 213)
we then find that

o (s

We choose ¢ and ¢, as in the proof of Theorem 1 and set B, (x) = ¢. (x —%) and
b, =D™"'B,. It follows that b, is a p-atom with support in the interval
J=(3-al2,3+al2).

We have b, = 25 c.f, with convergence in L*, where ¢, = [ b.f.dt. It follows
that b, =25 ¢,f, with convergence in H” and hence

= Clflwe,  fEHD).

p

a, = a,(b,) =J b.f.dt = (-1 J B.D™*'f.dt.
Since D™"'f, has a jump of absolute value = c¢2'™*¥? at the point ; and is
constant on each of the intervals 3 —277",3) and (,3+27"), we obtain
|a, (b.)| = ca™"' VP2 ING = 2imID, a=2" jzj,

where ¢ > 0.
It is known that there exists a subinterval I, of the interval I, such that

[Il|=zc27

and
[fo(x)| 2 27, x€I,,

for some constant ¢ >0 (see the proof of lemma 2 in [6]).
We first assume that k = 2. Then the intervals I, are disjoint. Invoking (13)
and writing a,. instead of a.(b,) we obtain

cz|(San)” p ~([(Sairt)" )"

and hence

IV

c=[(San) az 3 [ (Sen) a

iZjo

’
n;=1/a i

=3 f (alfiyidtzc Yy, 2im+3mpomigier
iZfo JI, iZjo
n=lja nysl/a
e 3 dmmri=c 31
iZig J=fo

n;s1/a n;=1/a
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But the right-hand side tends to infinity as a —0 and hence we obtain a
contradiction.

If k=1 the intervals I, are not disjoint, but we can choose I, so that
I.C(1-8)I, 6§ >0, for every n. Then the intervals I, , j=1,2,3,--, are
disjoint if L is chosen so large that 27% < 8. The above argument now applies
with the intervals I, replaced by the intervals I,, . It follows that (f,); is not an
unconditional basis of H?(I) and the proof is complete.
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